
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3). 
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

Propagating Updates
Alan M. Marcum and Garth Snyder

The only database that a NetInfo client can modify is the master 
database. Clones in a domain can only be read, not written, by clients. If 
a writing client happens to be connected to a clone server, it reconnects 
to the master before it writes new information.
So, how do modifications to the master's database reach the clones? 
Through an operation called update propagation. This article explains 
how update propagation works, including its performance optimizations 
and how it handles tricky updates.

WHEN THE DATABASE CHANGES
When the master executes a write request, it makes the change in its 
database. Then it sends the update along to all the clones of the domain. 
This update propagation is automatic. System and network 
administrators don't need to manually intervene or tune the system.
Yet, although the update process sounds simple, it has subtleties that are 
interesting to explore.



What is sent to the clones

In general there are a few different ways to inform copies of any 
database, including clones in NetInfo, about changes to the database. 
One possibility is to send the entire database to the copies. Another way 
is to send only the data that changed. A third is to send a portion of the 
database, smaller than the entire database but greater than only the 
changed information. And a final option is to send some sort of 
transaction log that allows the copies to reconstruct the changes.
NetInfo usually uses a modified version of the final option of propagating 
updatesÐthe NetInfo master server sends the transactions to the clones. 
For example, if the client that made the change used an NI_WRITE 
operation, which writes all of a directory's properties, the master also 
uses an NI_WRITE operation. If the client used an NI_WRITEPROP 
operation, which writes only one property, so does the master. 
(Under special circumstances, the master sends the entire database to 
individual clones. See ªWhen a Clone Misses an Update,º later in this 
article)

Updating immediately

When the master receives and executes a write request, it notifies the 
clones of the change to the domain immediately. This quick response 
helps ensure that all copies of the database are in sync with the master 
with minimal effort from an administrator, and with minimal chance for 
errors. The master sends the update to each clone in turn. 



KEEPING UPDATE PERFORMANCE HIGH
When there are many clones or many changes, the master server uses 
multi-threaded propagation and update coalescing to keep update 
propagation performance high.

Multi-threaded update propagation

If there are lots of updates, as is typically the case with a large network, 
the master server takes steps to decrease the delay between when the 
master gets the write request from the client and when it begins to 
propagate the update. When a client makes an update, the master begins
propagating the update in a separate thread. If another update request 
arrives while the first is being propagated, the master starts a new thread
to propagate the second update.
Multi-threaded update propagation is new in Release 3. In both Release 
3.0 and Release 3.1, a single master can handle up to five update threads
at one time.

Update coalescing

Another performance optimization NetInfo uses is update coalescing. 
When a master starts an update thread, it combines all pending 
updatesÐthose that no threads are currently propagatingÐand sends 
them to each clone using a single connection. Multiple messages are sent
through the connectionÐone message per update transaction. However, 



establishing the connection only once requires less overhead than 
sending each update through a separate connection.
When an update arrives while another update is being propagated, it isn't
coalesced with the other update. Once an update thread begins running, 
the updates it propagates don't change. But, if all five update threads are
running and a new update arrives, the new update waits in the work 
queue until a thread becomes available. Once a thread is available, the 
master coalesces all the updates waiting in the work queue, so they are 
all handled by the freed thread.
Update coalescing improves update performance in networks whose 
domains change frequently. There's a small price to pay, though: there's a
two second delay between when the master receives a write request and 
when it begins propagating the change. This delay allows the master to 
coalesce changes whenever possible.
Update coalescing was also first implemented in Release 3.

WHEN A CLONE MISSES AN UPDATE
What if a clone is down when an update is sent, or if the master cannot 
reach the clone because of a network failure? Sure, the master tries hard:
it waits for a 60-second timeout period before giving up on sending an 
update to a clone. Still, failures can occur.
As an example, assume a network problem causes a clone to be 
inaccessible to the master for a while, although the clone server's 



computer continues running. While the clone is inaccessible, a client 
process makes a change to the domain. When the master propagates the 
update, the inaccessible clone doesn't receive it. 
So, when the network problems are fixed, how will the clone's database 
be updated? Once the clone comes up, it'll begin getting updates, but 
what about updates sent while the clone isn't reachable?

Updates at startup time

When either a clone or the master starts up or is restarted, the clone's 
database is updated. When the master starts up, it tells all the clones 
that it has started, and sends its database checksum with the notice. If a 
clone is out of date, the clone requests a new copy of the current 
database. 
Similarly, when a clone starts up it checks in with the master, sending the
clone's checksum. Again, if the two checksums differ, the master sends 
the clone the entire database.

Updates after startup

It's possible, though, that both the master and clone could run for a long 
time without being restarted. This would seem to allow the clone's 
database to remain obsolete for quite a while. 
However, every 30 minutes the master and the clones verify that all 
copies of the database are current, by verifying that the clones' 
checksums agree with the master's. So, a clone can't stay out of date for 



long.

Updates on the way

There's one instance, though, when the master won't send an out of date 
clone a copy of the database. If an update is being propagated that hasn't
yet been sent to the clone, the master tells the clone that an update 
propagation is in progress. The clone netinfod then sends a message to 
its syslog:
transfer failed at Master server is busy: id=-1

The clone will be current once it receives the update. 


